EL	EVATOR MOTO	<u>r sizing estin</u>	MATE	
	HYDRAULI	C PUSH LIFT		
2 - 3 STORY	4 - 5 STORY	6 - 8 STORY	I -	
25HP	50HP	125HP	-	
	CABLE	PULL LIFT		
2 - 3 STORY	4 - 5 STORY	6 - 8 STORY	T-	
??HP	??HP	??HP	-	
EMERGENCY POWER IF AVAILABLE AND SHUNT TRIP.				

TAP RULE

NEC 240.21(B) - READ TO MEET ALL CONDITIONS

(1) NOT OVER 10' - AMPACITY NOT LESS THAN COMBINED CALCULATED LOAD

(2) NOT OVER 25' - AMPACITY NOT LESS THAN 1/3 OF

OVERCURRENT DEVICE

(3) TRANSFORMER - AMPACITY NOT LESS THAN 1/3 OF OVERCURRENT DEVICE

(4) OVER 25' - AMPACITY NOT LESS THAN 1/3 OF OVERCURRENT

(5) UNLIMITED LENGTH -

UNDERVOLTAGE -VS- SHUNT TRIP FOR RECEPTACLES LOCATED LINDER A KITCHEN HOOD

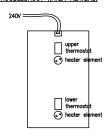
UNDERVOLTAGE IS MORE FAIL SAFE IN THAT IT REQUIRES A 35% TO 70% OF CONTROL VOLTAGE TO STAY ON. IF USING AN ANSUL FIRE SUPPRESSION CONTROL, IT WOULD REQUIRE A N.C. CONTACT

SHUNT TRIP REQUIRES A 120V SOURCE TO CLOSE THE

UNDERVOLTAGE TRIP IS WAS REQUIRED BY SC OFFICE OF SCHOOL FACILITIES (OSF). MEMO FROM OSF DATED OCT, 29 2003 SHOWED THIS SHORT COMING. 2010.3 IN 2012 CODE.

MCA - SIZE WIRE $KW = \frac{V}{1000} \times \sqrt{3} \times MCA$ MOP - SIZE BREAKER

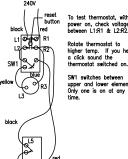
MOP (ONLY KNOWN) - SIZE WIRE & BREAKER A TYPICAL GOLF COURSE IS 180 TO 220 ACRES


GE: A Series lighting panels were introduced in the late 1980's. The lineup of A Series panels includes all of the following: AQ, AL, AE, AD, and our newest is AS

The previous version panels were: NLTQ, NLAB, NAB, and NHB

The power panels were changed in the same timeframe as well. The current model is Spectra, and the previous version is CCB.

TEMPERATURE			
	KELVIN	CELSIUS	FAHRENHEIT
ABSOLUTE ZERO	OK	273.16°C	459.7°F
WATER FREEZES	273.16K	0°C	32'F
WATER ROILS	373 16K	100°C	212'F


K=C* + 273.16 F=(9/5)C + 32 ONLY QUALIFIED ELECTRICIANS SHOULD TROUBLESHOOT WATER HEATERS.

To check heater elements Make sure power is off and wires are removed before working with connections.

Remove at least one wire on element before proceeding. Check resistance from both terminals of the heater element. There should be between 8 to 25 ohms. If it reads differently then replace

The top element heats first so make the bottom element hotter than the top, especially for taller water heaters. There may be a short instance of hot water if it is not tuned correctly.

Regional Variation in Levelized Costs of New Generation

Resources, 2019 Plant Type

Conventional Coal

Natural Gas Fired

Advanced Nuclear

Geothermal

Wind-Offshore

Solar Thermal

PV = photovoltaics. GHG = greenhouse gas

Biomass

Solar PV

Conventional Combined Cycle

Conventional Combustion Turbine

Advanced Combustion Turbine

Hydro

0&M = operation and maintenance. CC = combined cycle.

CCS = carbon capture and sequestration.

Advanced Combined Cycle

IGCC with CCS

To test thermostat, with power on, check voltage between L1:R1 & L2:R2. Rotate thermostat to higher temp. If you hear a click sound the

> SW1 switches between upper and lower element. Only one is on at any

Total System Levelized Costs (2010 USD/MWh) Minimum Average Maximum 87.0 95.6 114.4

112.2

147.4

66.

91.3 105.0

128.4

103.8

96. 102.

102.6

204.

130.0

243.1 84.5 388.0

85.5

96.9

46.2

92.3

101.4

176.8 61.6

106.0

163.

75.8

149 4

119.8

50.

122.9

200.

25% of 80 is 20

25% = 25/100

30 apples

 $(25/100) \times 80 = 20$

(10/200) = .05 (5%)

 $(25/100) \times $120 = 30

\$120 - \$30 = \$90

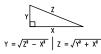
15% of 200 apples were bad.

How many apples were bad?

 $(15/100) \times 200 = 15 \times 2 =$

If only 10 of the 200 apples

A Skateboard is reduced 25%


The old price was \$120.

vere bad, what percent is

that?

Prefix Symbol 10th votta zetta 1018 1015 peta 1012 tera 10⁹ giga mega kilo hecto 10¹ deca da 10-1 centi 10⁻³ milli m micro nano 10-12 pico 10⁻¹⁵ femto 10-18 atto 10-21 zepto yocto

BREAKERS IN A PANEL MAY HAVE DIFFERENT SIZED AIC RATING BUT LOWEST RATED SHALL DESIGNATE SIZE FOR PROTECTION OF PANEL. IE: IF MOST ALL BREAKERS ARE 65K AND ONE IS RATED FOR 42K, THE PANEL SHALL BE DESIGNATED 42K AIC. ONLY WHEN ALL RATINGS ARE OVER 65AIC DOES THE SIZE OF THE BOX START TO BE CONSIDERED BECAUSE OF THE EXTRA SUPPORT REQUIRED TO MOUNT BREAKERS.

American

10'

1" x 25.4 = ___mm

mm

230

610

1220

1830

2438

3048

3658

mm x .03973 =

00 based MISC

DESIGNERS

GUIDE

9

 \bigcirc

 \sim

 α

API

eq

edite

ш

 \equiv

 \forall

0

CURRENT CARRIERS IN CONDUIT RUNS					
ø N G IG NO. OF CCC* PER CONDUIT GROUP					
12 12 12	12	12	12	(3)	
12 12	12	12	12	(3)	
12	12	12	12	(2)	
12 12 12	12	12	12	(6)**	
12 12 12	12	12	12	,,	
12 12 12		12	12	(3)	
12 12		12	12	(3)	
12	12	12		(6)**	
12 12 12	12	12			
*CURRENT CARRYING CONDUCTORS **TABLE 310-15(B)(2)(a) ADJUSTMENT FACTORS					

FOR MORE THAN 3 CURRENT CARRYING
CONDUCTORS IN A RACEWAY OR CABLE

BOND JUMPER PER NEC 250.28 SIZED PER NEC 250.66 GROUND NEC 250.92 BONDING Βø SERVICE ENTRANCE (NO ELECTRODE) DISTRIBUTION, 3¢ ONLY LOAD COMBINATIONS MUST BE BALANCED Grounding electrode system TO PANELBOARD GROUND BUS COLD WATER DID CROLIND RING WIRE NOTE 1: NEC 250.52(A)(1), CONNECTIONS SHALL BE MADE WITHIN 5 FEET OF POINT OF ENTRY OF WATER PIPE. FOR INFORMATION ONLY. REFER TO NATIONAL, REGIONAL LOCAL & AHJ CODES FOR EXACT REQUIREMENTS OF GROUNDING, BONDING AND SERVICE CONNECTIONS.

NEUTRAL

SIZED PER NEC

250.122

CIRCUIT TYPES

RECEPTACLE

DISTRIBTUTION

ISOLATED GROUND

NEC 250.146(D)

RRANCH

POWFR

LIGHTING

Energy Comparison	
1 pound of wood	6,401 BTUs = 1.9 KWH
1 pound of coal	13,000 BTUs = 3.8 KWH
1,000 cubic foot of natural gas	1,000,021 BTUs = 299 KWH
1 gallon of oil	138,095 BTUs = 40.5 KWH
1 gallon of propane	91,500 BTUs 26.8 KWH

National Compariso	
Mix of Electric Generation	Sources
• Coal	52%
Nuclear	19%
·Gas & Fuel Oil	18%
• Hydro	7%
· Wood/Biomass, Wind, Solar	4%
US Department of Energy, Se	ptember, 2005
National average cost of Elec 8.83 cents per kilowatt hour	tricity

Power Plant	Cost
Туре	\$/kW-hr
Coal	\$0.10-0.14
Natural Gas	\$0.07-0.13
Nuclear	\$0.10
Wind	\$0.08-0.20
Solar PV	\$0.13
Solar Thermal	\$0.24
Geothermal	\$0.05
Biomass	\$0.10
Hydro	\$0.08

DIOTTIUSS	10.10	
lydro	\$0.08	
		When used as a unit of power for heating and cooling systems. BTU pe
Fuel Energy E		(BTU/h) is the correct unit, though this is often abbreviated to just "B
Wood	1.9 KWH per pound	1 watt is approximately 3.412142 BTU/h[10]

Coal 3.8 KWH per pound 1000 BTU/h is approximately 293.071 W Natural Gas 6.9 KWH per pound 1000 BTU/h is approximately 2544 BTU 1 horsepower is approximately 2544 BTU/h (liquid and aas measures are calculated at 6.3 pounds per gallon)

Propane

6.4 KWH per pound

4.3 KWH per pound

per hour вти"

> HEAT FROM LIGHTING SYSTEM = KW x 3.412142* x DUTY HOURS * - MBtu/kWh

Covert 5000 watts to BTU per hour: 3.412142 x 5000 = 17060.71 BTU/hr.

RADIOACTIVE DECAY					
ISOTOPE	HALF-LIFE	DECAY PRODUCT	HALF-LIFE		
A. FISSIONABLE MATERIAL URANIUM-235 URANIUM-238 URANIUM-239	7.1 x 10 ⁸ yr. 4.5 x 10 ⁹ yr. 2.4 x 10 ⁴ yr.	THORIUM-231* THORIUM-234* URANIUM-235*	25.2 hr 24 days 7.1 x 10 ⁸ yr.		
B. FISSION PRODUCTS LANTHANUM—140 IODINE—131 STONTIUM—90 CESIUM—137	40 hr. 8 days 28.9 yr. 30.0 yr.	CERIUM-140 XENON 131m YTTRIUM-90 BARIUM-137m	STABLE 11.9 days 64 hr 2.5 min		
C. OTHER RADIOISOTOPES RADON-222 POTASSIUM-40 SODIUM-24 HYDROGEN-3 (TRITIUM)	3.8 days 1.3 x 10 ⁹ yr. 15 hr. 12.3 yr.	PLONONIUM-218* CESIUM-40 OR ARGON-40 MAGNESIUM-24 HELIUM-3	3 min STABLE STABLE STABLE STABLE		
* INCLUDES OTHER DAUGHTER RADIONUCLIDES.					

(rounded

200

600

1200

1800

2400

3000

3600

Material	Resistivity	Density	MELTING POINT	Resistivity-density
	(nΩ·m)	(g/cm ³)	(°C)	product Ω per m
Silver	15.87	10.49	960	1.591-08
Copper	16.78	8.96	1083	1.664-08
Gold	22.14	19.30	1064	2.349-08
Aluminium	26.50	2.70	660	2.665-08
Calcium	33.6	1.55	842	3.540 ⁻⁰⁸
Beryllium	35.6	1.85	1287	4.000-08
Magnesium	43.90	1.74	650	4.467 ⁻⁰⁸
Bronze	50.0	8.70	950	7.184 ⁻⁰⁸
Sodium	47.7	0.97	97.72	??
Zinc	60	7.13	419.2	5.945 ⁻⁰⁸
Nickel	70	8.90	1455	6.842 ⁻⁰⁸
Brass	70	8.70	925	6.158 ⁻⁰⁸
Potassium	72.0	0.89	63.38	??
Lithium	92.8	0.53	180.5	8.535-08
Iron	96.1	7.874	1538	9.579 ⁻⁰⁸
Tin	142	7.30	231.9	1.232-07
Lead	207	11.34	327.5	1.567-07
Nichrome	1000	~8.0	1400	1.250-06

Product	1 Gallon Pounds
Ale	8.33
Acid. Nitric	10.58
Acid. Sulphuric	15.42
Acid. Muriatic	10
Alcohol, Commerce	6.74
Alcohol, Proof Spirit	7.9375
Naphtha	7.08
Oil, Linseed	7.75
Oil of Turpentine	7.25
Oil, Whale	7.25
Petroleum	7.35
Vinegar	8.43
SaltWater	8.59
Tar	8.43
Distilled Water	8.33

Boiling Points	and Heat of Vaporizati	on	
Substance	Boiling point K	Boiling point *C	Heat of vaporization (103 J/kg)
Helium	4.216	-268.93	20.9
Hydrogen	20.26	-252.89	452
Nitrogen	77.34	-195.81	201
Oxygen	90.18	-182.97	213
Ethyl alcohol	351	78	854
Mercury	630	357	272
Water	373.15	100.00	2256
Sulfur	717.75	444.60	326
Lead	2023	1750	871
Antimony	1713	1440	561
Silver	2466	2193	2336
Gold	2933	2660	1578
Copper	2840	2567	5069

FIGURE 25.3 (IESNA) CONVERSION FACTORS FOR VARIOUS FUELS					
FUEL	FUEL	UNIT	FUEL TO		
	EFFICIENCY	ENERGY	OBTAIN 1 MBtu		
ELECTRIC HEAT	1.0	0.0034 MBtu/kWh	283 kWh		
COAL	0.85	30 MBtu/TON	0.05 TON		
NO. 2 FUEL OIL	0.70	0.14 MBtu/GAL	10 GAL		
NATURAL GAS	0.70	1.0 MBtu/mCF	1.4 mCF/MBtu		
MRtu _ 1 THOUSAND RTU (1 000)					

WARNING SYMBOLS

WARNING

Potential arc flash hazards

exist while working on this

energized equipment.

SHOCK HAZARD

ſ	Specific Resistance
ı	The Specific Resistance (K) of a material is the
ı	resistance offered by a wire of this material which is

one foot long with a diameter of one MIL.

The resistance of a wire is directly proportional to the specific resistance of the material.

Material	"K"	Material	"K"
Brass	43.0	Aluminum	17.0
Constantan	295	Monel	253
Copper	10.8	Nichrome	600
German Silver 18 %	200	Nickel	947
Gold	14.7	Tantalum	93.3
Iron (Pure)	60.0	Tin	69.0
Magnesium	276	Tungsten	34.0
Managnin	265	Silver	9.7